\sqrt{2\pi}+\sqrt[3]{abc}

.632 \approx 1 - \frac{1}{e}

f(x) = k_{1}e^{-k_{2}x}

\int_{0}^{\infty} e^{-kx}dx = -\frac{e^{-kx}}{k}\Big|_0^\infty

\frac{1}{k}=1 \text{ so } k=1

\int_{0}^{d}e^{-x}dx=-e^{-x}\Big|_0^d

1-e^{-1}=0.63212...

d=-log(1-r)

d=-log(r), 0<r\leq 1

\mathcal{ABCDEFG}\mathbf{abcABC}

\displaystyle \Big[\sum_{k=0}^n e^{k^2}\Big]

n!=\displaystyle \prod_{i=2}^n i, \partial \triangle

\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega

A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi \Sigma T \Upsilon \Phi X \Psi \Omega

\emptyset \infty \overrightarrow{v_1} \overline{abc}

\begin{pmatrix} a &b \\c &d \end{pmatrix}

\nabla=\boldsymbol{i}\frac{d}{dx}+
\boldsymbol{j}\frac{d}{dy}+
\boldsymbol{k}\frac{d}{dz}

\{\}\big[\big]\Big[\Big]\bigg[\bigg]\Bigg[\Bigg]

\left(\!\!\!\begin{array}{c}n\\r\end{array}\!\!\!\right)=
\frac{n!}{r!(n-r)!}

a^n-b^n=(a-b)\sum_{k=0}^{n-1}a^ib^{n-1-i}

https://en.wikibooks.org/wiki/LaTeX/Mathematics link to good online reference