|
|
\sqrt{2\pi}+\sqrt[3]{abc}
.632 \approx 1 - \frac{1}{e}
f(x) = k_{1}e^{-k_{2}x}
\int_{0}^{\infty} e^{-kx}dx = -\frac{e^{-kx}}{k}\Big|_0^\infty
\frac{1}{k}=1 \text{ so } k=1
\int_{0}^{d}e^{-x}dx=-e^{-x}\Big|_0^d
1-e^{-1}=0.63212...
d=-log(1-r)
d=-log(r), 0<r\leq 1
\mathcal{ABCDEFG}\mathbf{abcABC}
\displaystyle \Big[\sum_{k=0}^n e^{k^2}\Big]
n!=\displaystyle \prod_{i=2}^n i, \partial \triangle
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega
A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi \Sigma T \Upsilon \Phi X \Psi \Omega
\emptyset \infty \overrightarrow{v_1} \overline{abc}
\begin{pmatrix} a &b \\c &d \end{pmatrix}
\nabla=\boldsymbol{i}\frac{d}{dx}+
\boldsymbol{j}\frac{d}{dy}+
\boldsymbol{k}\frac{d}{dz}
\{\}\big[\big]\Big[\Big]\bigg[\bigg]\Bigg[\Bigg]
\left(\!\!\!\begin{array}{c}n\\r\end{array}\!\!\!\right)=
\frac{n!}{r!(n-r)!}
a^n-b^n=(a-b)\sum_{k=0}^{n-1}a^ib^{n-1-i}
https://en.wikibooks.org/wiki/LaTeX/Mathematics link to good online reference