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Abstract 

Although texture mapping is a common technique for 
adding apparent surface detail to 3-D objects, it lacks the 
capability to represent the motion parallax effect.  So the 
mesh to which it is applied limits its realism.  In this 
paper, we propose Parallax Mapping, a simple method to 
motion parallax effects on a polygon.  This method has 
very fast per-pixel shape representation and can be 
performed in real-time with current hardware. 

Key words: Displacement Mapping, Image-Based 
Rendering, Texture Mapping, Real-time Rendering, 3D 
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1. Introduction 

Among the domain of research in real-time computer 
graphics, there are two main approaches to render 
images of a scene:  geometry-based rendering and 
image-based rendering.  The former can generate images 
from different viewpoints with 3-D data sets, such as 
polygon meshes and their surface properties.  However a 
complex scene may involve large data sets that can be 
prohibitive to process in real-time.  So the developer 
must take care to maintain manageable data sets.  On the 
other hand, for the latter approach, rendering time does 
not depend on the scene’s complexity.  It renders images 
from different viewpoints by interpolating between 
photographic images, so it is easy to generate photo-
realistic output.  However this approach tends to require 
larger data sets, and it sometimes restricts the viewpoint 
and scene structure.  Further, its calculations tend to be 
slow because of the lack of graphics hardware 
acceleration. 

Texture mapping [1][2] is a nice combination of the 
two approaches.  You can easily represent the apparent 
detail of surfaces with simple image data, without 
increasing geometric primitives.  It is processed 

extremely rapidly on today’s graphics hardware, and its 
rendering cost is independent of the complexity of its 
pattern. 

Although it is suitable for many cases, there are 
inadequacies.  The quality of its output image depends 
on the geometric primitives it is applied upon.  Of 
particular note, a texture image mapped onto curved or 
bumpy surfaces does not have curvature within a single 
polygon.  This problem is magnified when inspecting a 
texture-mapped surface with stereoscopic vision, 
because the lack of binocular disparity between each 
mapped polygon is a depth cue that the surface it 
represents is flat. 

There are two main reasons for this problem. First, 
texture mapping lacks the capability to represent a 
motion parallax effect – an apparent effect of relative 
movement of objects due to a viewpoint.  So you cannot 
represent view-dependent unevenness or change of 
silhouettes.  Second, while texture mapping works as a 
per-pixel table lookup, mapping coordinates are defined 
per-vertex from the geometry it is applied on.  So even if 
you apply a texture image to a curved surface, the result 
looks flat from the linear interpolation of texture 
coordinates on each polygon.  

To solve this problem, we proposed a Parallax 
Mapping method[3][4].  This method represents the 
motion parallax effect on a single polygon surface using 
per-pixel texture coordinate addressing.  So you can get 
per-pixel level representation of view-dependent surface 
unevenness and silhouette change for each polygon.  It 
uses a per-pixel image distortion process like image-
based rendering, but it has a capacity to be accelerated 
by graphics hardware.    So it is fast enough to be used 
with many polygons in geometry-based rendering. 

2. Related Work 

Texture Mapping is the addition of separately defined 
image data to a surface.  Texture mapping hardware is 



 

common today, and it works extremely fast even on 
affordable consumer graphics cards.  However, 
traditional texture mapping only affects the color of 
surfaces, like painting on the wall.  Silhouettes still 
depend entirely upon the geometry of the object as 
shown in Fig. 1. 

 
Today, geometry-based rendering hardware is 

becoming cheaper and faster than ever, and we can 
render complex polygonal objects with texture mapping 
in real-time.  However, from nearby viewpoints, it is 
evident from the rough, per-vertex-computed silhouette 
that the textures are only paintings on flat surfaces.  To 
improve this appearance, there are many techniques to 
represent additional per-pixel details. 

In real-time geometry-based rendering, Gouraud 
shading [5] is usually used for shading the surfaces, 
which computes lighting at each vertex, and interpolates 
vertex results across pixels.  Recently there are some 
researches on real-time Phong shading [6], which 
computes the lighting at every pixel on the surfaces. 
These real-time techniques represent smoothness of the 
surfaces by hardware accelerated per-pixel lighting 
computations. 

Bump Mapping [7] adds per-pixel relief shading to 
represent small unevenness of surfaces by perturbing the 
surface normal directions.  It is useful to represent rough 
or etched surfaces, and today’s some graphics hardware 
can compute it in real-time [8].  This technique, 
however, is only a shading effect, and the bumps are 
illusory.  So it can’t describe large unevenness, and the 
silhouettes of the applied polygons are still flat. 

Displacement Mapping [9] actually displaces the 
surface in 3-D space.  Although it can modify the 
silhouette and realize parallax effects, it needs many 
polygons to generate a transformation through height 
map data.  It is a kind of modeling technique that is 
unsuitable for real-time rendering. 

3. Parallax Mapping 

In this paper we present Parallax Mapping, a real-time 
parallax distortion to represent detail shape on a single 
polygon.  It uses per-pixel texture coordinate addressing 
to enhance its rendering quality and to enable the 
execution of per-pixel computations with graphics 
hardware. With this method, motion parallax is realized 
by mapping a texture that is distorted dynamically to 
correspond to the destination represented shape. 
Although the dynamic distortion of texture has been 
investigated in the domain of Image Based 

Rendering[10], techniques for real-time rendering have 
gone unreported. We realize this texture generation 
process not by distorting the actual texture, but by 
shifting texture coordinates of each drawn pixels as the 
texture is mapped to the polygon online. This process is 
accelerated by utilizing a graphics API supported by 
commonly used graphic hardware. Hereafter, the 
arguments for implementation are described. 

3.1 Calculation of Texture Coordinate Shift 
In our approach, used in geometry-based rendering, a 
scene consists of many polygons, and Parallax Mapping 
adds to them some additional details such as the 
displacement mapping in real-time.  So the entire 
perspective distortions are processed in normal 
geometrical fashion, and the perspective correctness in 
the parallax is relatively less important.  Especially for 
surfaces relatively small in a rendered image, or on 
billboard-type objects that always face the viewer, he 
can’t distinguish between a parallax effect with 
perspective projection and one with orthogonal 
projection. So we introduce orthogonal  projection to 
calculate the texture coordinate shift corresponding to 
motion parallax.  

Fig.1 Per-vertex shape (left) and per-pixel shape (right) 
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The left side of Fig.2 is the schematic of a texture 
coordinate system of an oblong polygon defined  by the 
u, v axes. In this figure, n and e are the vectors of 
observation orientation, and the surface normal of the 
polygon, respectively. This polygon is supposed as a 
consistent of a part of curvature, and the curvature 
floated from polygon with depth named depth(u,v). The 
right figure is the image of  projected left figure to the 
plane defined by u,n axes. Now, to express point A as on 
expected curvature, it is necessary that the texture 
coordinate of point A’ is put on point A’’. We set the 
angel θu between the texture axis u and the visual axis 
e, the translation of the shifted texture coordinates are 
described as followed. 

u ’= u + tanθu × depth(u,v) 
u : source texture coordinate of u axis 
u’: resulting texture coordinate of u axis 

The angle which texture axis v and visual axis make is 
set θv, it is the same also about v axis. 
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Fig.2 Geometry of texture coordinate shift 



 

v’ = v + tanθv×depth(u,v) 
v : source texture coordinate of v axis 
v’: resulting texture coordinate of v axis 

3.2 Depth Approximation 
By the way, in the stage of  rasterization, texture 
coordinate of point A’’ is used to render point A. At this 
time, it need the depth value of point A’ to calculate the 
texture coordinate of point A’ , but we could get the 
depth value of A’’. So, we suppose the expressed 
curvature is smooth and the angle which the normal of 
polygon and visual axis make is small, followed 
approximation is introduced. 

depth(u,v) = depth(u’,v’) 

3.3 Per-pixel texture Coordinate Addressing 
In our Parallax Mapping method, we address texture 
coordinates at each pixel. For this implementation, we 
use Environment Mapped Bump Mapping (EMBM) 
supported on Microsoft® Direct3D® API [11].  The 
texture coordinate address of each pixel is computed by 
following equation: 

u'

v'
=

u

v
+

M 00 M 01

M 10 M 11

Du

Dv  

where u, v are the source texture coordinates, and u’, 
v’ are the resulting texture coordinate address.  M is a 
user-defined 2x2 matrix for scaling and rotating the 
texture coordinates, and Δu, Δv are delta values of 
texture coordinates defined in a second texture map 
(referred to here as a distortion map), applied on the 
same surface, to distort the source texture coordinates.  
EMBM was originally used to represent bump mapping 
effects by perturbing specular or diffuse environment 
maps.  Some types of consumer graphics cards can 
accelerate this feature significantly, just like standard 
texture mapping. 

The simplest implementation using per-pixel texture 
coordinate addressing does not create a new texture 
image by painting pixels in it, but sets the source texture 
coordinates in its distortion map.  For example, 

M : identity matrix 
Δu = u - u’, Δv = v – v’. 

It needs some extra processing, but it can enhance 
quality of resulting image.  Because the distortion map is 
treated as a kind of texture image, when the distortion 
map is magnified in the rasterization process, it can be 
filtered with bilinear or trilinear interpolation.  This 
interpolation filtering can be hardware accelerated, and 
processed at each pixel in the resulting image. 

3.4 Implementation 
From the argument so far, we implemented Parallax 
Mapping by introducing the following values into the 
equation of EMBM. 

M00 = tanθu 
M01, M10 = 0 
M11 = tanθv 
Δu = depth(u, v) 
Δv = depth(u, v). 

4.Estimating approximation distortion 

Suppose that we make a texture mapped cylinder object 
with a rough prism using Parallax Mapping.  Fig.3 
shows the top view of this object.  In this figure, the 
doted curved line is the side of the supposed cylinder, 
the gray blocks are polygonal prisms which surrounded 
by polygons, and the bold curves are the results distorted 
by our approximation.  Here you can see that the rougher 
the polygonal object base, and the greater angle between 
the distorted texture mapped surfaces and the viewer, the 
more distortion occur. 

60 deg 

30 deg 

0 deg 

Fig.3 Distortion caused by depth approximation 
Observation orientation 

 

5.Results 

We used a desktop PC with Pentium® III 500MHz and 
ATI RADEONTM DDR 32MB graphics card.  The 
resolution of the texture image was 128 x 128, 24-bit 
color depth. The corresponding depth data was 128 x 
128, 8-bit depth.  The output size was 640 x 480, 32-bit 
color depth. Fig.4 shows the rendering results of  a 
Parallax Mapped single polygon compared to one with 
standard texture mapped. The result of Parallax Mapping 
shows the modification corresponding to motion 
parallax, and the expression of the smooth solid shape of 
the bricks. Furthermore, the drawing speed (434.50fps) 
is more than 80% of that of texture mapping 
alone(530.52fps).  

An example that applied Parallax Mapping to the 
facial expression using a color picture and actual depth 



 

information acquired with three-dimensional scanner is 
shown in Fig.5. The opposing pictures on the right and 
left are the results of drawing from the different 
observation angles, respectively. The upper set is the 
result of ordinary texture mapping and the lower set is 
result of Parallax Mapping. With an uncross-eyed stereo 
match to these pictures, a smooth form of a nose is 
perceivable from the results of Parallax Mapping. So it 
was shown that Parallax Mapping can express the per-
pixel binocular disparity correctly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 is an example of applying parallax mapping to 
solid model using a cylindrical expression with 8-sided 
prism model. For comparison, the top part of each 
cylinder shows the result of texture mapping with a 32-
sided prism model. This example shows the result for the 
case that the polygon is set to the interior of the cylinder. 
The left image is the result of ordinary texture mapping 
and the right image is the result of Parallax Mapping. 
There is mismatching of the texture pattern at the 
boundary of top and bottom parts of the left image. In 
contrast, the texture pattern is matched for a wide range 
on the right side. So by using Parallax mapping, it is 
shown that the shape of cylinder is represented correctly 
by per-pixel texture coordinate shift corresponding to 
motion parallax.  

 

 

 

 

 

 

 Fig.6 Examples of solid model 
Texture Mapping(left) and Parallax Mapping(right)   

6.Conclusion 

We present Parallax Mapping to represent motion 
parallax on a single polygon in real-time.  It simplifies 
the image-based approach in order to be fast enough to 
use with complex polygonal objects.  It also enhances 
the quality of the rendering result by using per-pixel 
texture coordinate addressing.  Attention must be given 
to the undesirable distortion from its approximation, but 
for the general case it performs extremely rapidly with 
today’s graphics hardware acceleration. 

Fig.4 Results of Texture Mapping(left)  
          and Parallax Mapping(right). 
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